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Compensation of Beam-Beam Effects in the Tevatron with Electron Beams

V. Shiltsev, V. Danilov†, D. Finley, A. Sery‡
Fermi National Accelerator Laboratory∗, Batavia, IL 60510, USA

The beam-beam interaction in the Tevatron collider sets
limits on bunch intensity and luminosity. These limits are
caused by a tune spread in each bunch which is mostly due
to head-on collisions, but there is also a bunch-to-bunch tune
spread due to parasitic collisions in multibunch operation. We
propose to compensate these effects with the use of a counter-
traveling electron beam, and present general considerations
and physics limitations of this technique.
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I. INTRODUCTION

Two major Tevatron upgrade projects are under real-
ization and consideration now. One is based on the oper-
ation of the Main Injector and the Antiproton Recycler
and is called Run II, and the second is called “TEV33”.

Table I ( [1], [2]) gives the main parameters of these up-
grades.

The beam-beam interaction between protons and an-
tiprotons takes place at the two head-on interaction
points (IPs, located at B0 and D0 sectors), as well as
at numerous parasitic crossings where the beam orbits
are separated by about a dozen of their rms sizes. Since
the proton beam intensity is several times the antipro-
ton intensity, the beam-beam effects are more severe for
antiprotons (p̄). It is to be noted that the design value
of the total tune shift for antiprotons is about the max-
imum experimentally achieved value for proton colliders
∆ν ≈ 0.025 [3]. The “footprint area” (spread of betatron
frequencies) of the p̄ beam with such a tune shift is large
enough to also cause an increase of particle losses due to
higher order lattice resonances [4].

In order to achieve sufficient beam-beam separation
away from the IPs, a crossing angle of about 200 mi-
croradians between proton and antiproton orbits at the
main interaction points can be used. Besides the ge-
ometrical luminosity reduction, the crossing angle may
lead to synchrobetatron coupling, additional resonances,
beam blow-up and luminosity degradation [5], although
the maximum tune shift becomes smaller with the angle.

Tevatron beam injection requires some gaps in the
bunch train that results in the so-called “PACMAN ef-
fect” – bunch-to-bunch variation of the betatron tunes
due to long-range beam-beam interactions.

TABLE I. The Tevatron Upgrades

Parameter Run II TEV33

Beam energy Eb, GeV 1000 1000
Luminosity L, s−1cm−2 2.1 · 1032 1.2 · 1033

No. of bunches (p,p̄) Nb 36,36 140,121
Min. bunch spacing τ , ns 396 132
Protons/Bunch Np/1011 2.7 2.7
Antiprotons/Bunch Np̄/1011 0.75 0.6
p-emittance rms εnp, πµm·rad 3.3 3.3
p̄-emittance rms εnp̄, πµm·rad 2.5 2.5
Number of IPs NIP 2 2
Interaction focus β∗, cm 37 37
Crossing half-angle θIP , mrad 0 0.14
Bunch length σs, cm 37 37→14

p̄-tune shift ∆νp̄ ∼0.020 ∼0.015
p-tune shift ∆νp 0.005 0.007
p̄ bunch to bunch

tune spread δνp̄ 0.007 0.010
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The effect depends on the orbit separation around the
ring and is most visible for bunches close to the gaps.
For example, the larger circles in Fig.1 from [2] shows
the spread in vertical and horizontal tunes for small be-
tatron amplitude particles in all p̄ bunches for TEV33
with 140 proton and 121 antiproton colliding bunches.
(See parameters in the Table I.) In the same Figure, the
smaller circles represent the tunes of non-zero amplitude
particles in three of the p̄ bunches. One can see that the
tune spread within each bunch and the bunch-to-bunch
tune spread are both about 0.008.

During Run II with 36 bunches in each beam, the
bunch-to-bunch spread is expected to be about δν ≈
0.007, while the single bunch tune spread will be about
∆ν ≈ 0.018.
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FIG. 1. Tune spread in the antiproton beam for TEV33.
Large circles are for tunes of core particles in 121 antiproton
bunches. Small circles are tunes of non-zero betatron ampli-
tude particles in some bunches.

Another effect of the long-range interactions is the
bunch-to-bunch variation of x − y coupling due to the
skew component of the beam-beam kick [2]. That is of
concern because the Tevatron operates near the differ-
ence resonance νx = 20.585, νy = 20.575. These tune
spreads and the estimated skew-kicks are expected to be
a problem for the collider operation if uncorrected.

In this article we consider a technique for compensa-
tion of the beam-beam effects in the Tevatron with use
of high current, low energy electron beam [6], [7]. The
electron beam setup (schematically depicted in Fig.2) is
to be installed away from the proton-antiproton inter-
action points at B0 and D0. It provides the electron
beam which collides with the antiproton beam. The elec-
tron beam is to be born on an electron gun cathode,
transported through the interaction section in a strong
solenoidal magnetic field, and absorbed in the collector.

In principle, since the electron charge is opposite to the
proton charge, the electromagnetic force on antiprotons
due to the proton beam can be compensated by the elec-
tron beam. For the design we consider, the proton beam
has to be separated from the electron and antiproton
beams in the device.

electron beam

cathode

B 0

Bc

pbar bunch

collector

Solenoid, B, L

FIG. 2. Layout of beam-beam compensation device.

In Section II we consider two implementations of the
proposal: 1) an “electron lens” with modulated current
to provide different linear defocusing forces for different
antiproton bunches in order to equalize their betatron
frequencies; and 2) an “electron compressor”, that is a
nonlinear DC electron lens which compensates (on av-
erage) the nonlinear focusing due to the proton beam.
Section III is devoted to an analysis of the parameters
and stability of the electron beam for the beam-beam
compensation. Important side-effects due to the electron
beam are studied in Section IV. In Section V we present
a historical overview of the beam-beam compensation
ideas, discuss applicability of the technique to other col-
liders and make conclusions on our work.

Meanings of mathematical symbols used in the paper
are listed below:
z = (x or y) either horizontal or vertical coordinate
β∗ beta-function at IP
βz beta-function at the

electron beam set-up location
βe = ve/c electron velocity
γe = 1√

1−β2
e

γ(p,p̄) (p, p̄) relativistic factor
σs p̄ rms bunch length

σz =
√

εnzβz
γp̄

p̄ rms beam size
a radius of round electron beam
σe rms transverse electron beam size
ρ(p,p̄,e)(x, y) (p, p̄, e) charge distribution
n(e,i) (electron, ion) density
J electron current
je = eneve electron current density
L electron beam length
∆νz p̄ tune shift
∆νpz p tune shift
∆ν = |νx − νy| difference of hor.-vert. p̄ tunes
ξez p̄ tune shift due to electrons
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II. BEAM-BEAM COMPENSATION
TECHNIQUES

A. Linear electron lens

We start with the electron beam lens for compensa-
tion of the bunch-to-bunch tune spread in the Tevatron
antiproton beam. Time-modulated current of an elec-
tron beam can produce defocusing forces necessary to
compensate effects caused by parasitic beam-beam inter-
actions with the proton beam. We estimate the main
parameters of the electron beam and consider the result-
ing beam footprint.
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FIG. 3. Schematic Tevatron layout with two “electron
lenses”.

For the tune shift of the antiproton bunch due to the
electron beam, we calculate the tune shift of a parti-
cle with zero horizontal and vertical betatron amplitudes
and zero energy offset. The beam-beam interaction can
be described in terms of the two-dimensional potential
V (x, y), such that the beam-beam kicks given to a par-
ticle on each turn are equal to ∆z′ = −∂V/∂z, where z
may stand for either x or y. The tune shifts for zero am-
plitude p̄ particles which collide head-on with the electron
beam can be found from

∆νz = −βz
4π

∂2V

∂z2
. (1)

For a round, constant density electron beam with total
current J , radius a, and interacting with antiprotons over
length L, the potential is axisymmetric and equal to

V (r) = r2 (1 + βe)JLrp̄
eβeca2γp̄

, r2 = x2 + y2, (2)

and the tune shifts are equal to

ξez = −βz
2π

(1 + βe)JLrp̄
eβeca2γp̄

, (3)

where rp̄ ≈ 1.53 · 10−18m is the (anti)proton classical
radius. For example, one needs an electron beam with
about J = 1.65 A of current along a L = 2 m length, with
a = 1 mm radius, and energy 10 kV (βe = 0.2) in order to
obtain ξe ≈ −0.01 in the Tevatron collider with param-
eters γp ≈ 1066, βz=100m. If the electron beam radius
a is several times the p̄ rms beam size σz, then most an-
tiprotons have nearly equal tune shifts. The variable in
time electron current can be used for the compensation
of the bunch-to-bunch tune spread.

Eq.(3) shows that both horizontal and vertical tune
shifts ξex, ξey due to head-on collision with electrons have
the same (negative) sign. In contrast, long-range beam-
beam proton-antiproton interaction at parasitic crossings
shift horizontal and vertical tunes in opposite directions
∆νx ≈ −∆νy. The resulting bunch-to-bunch tune spread
along the line ∆νx+∆νy is several times the spread along
∆νx −∆νy as seen in Fig.1.

Obviously, two electron lenses - one at a location with
the horizontal beta-function larger than vertical βx � βy ,
and another one at βx � βy, see Fig.3 - can compensate
any bunch-to-bunch tune spread. The first one will pro-
duce a larger tune shift in the horizontal plane, and the
second in the vertical plane.

For our numerical simulations we chose two locations
in the Tevatron for two “electron lens” devices – one at
the short straight location called F48, and the other at
the upstream end of the C0 straight section. Parame-
ters of these locations and the two corresponding elec-
tron beams are presented in Table II. We assume round
constant density electron beams with radius about twice
the maximum of the horizontal or vertical p̄ sizes at the
corresponding location σx,y ' 0.5 − 0.7 mm. Let us
demonstrate the compensation technique for the bunch-
to-bunch tune spread shown in Fig.1.

If we denote the currents in the two electron lenses as
J1(t) and J2(t), then the core particles’ tune shifts due
to electrons are equal to:

ξez(t) = β1,z · J1(t) · C1 + β2,z · J2(t) · C2. (4)

The constants are C1,2 ≈ 3.03·10−5·L[m]
a2

1,2[mm]
for βe = 0.2.

TABLE II. Bunch-to-bunch electron beam lenses

Parameter Location 1 Location 2

Horiz. beta-function, βx1,2, m 101.7 59.0
Vert. beta-function, βy1,2, m 30.9 110.1
Round e-beam radius a1,2, mm 1.2 1.2
Length of the e-beam, L, m 2 2
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FIG. 4. Currents in the two electron lenses to compensate
the bunch-to-bunch tune spread in the 140×121 bunches sce-
nario - see text.

Full compensation of the tune spread requires the cur-
rents to be solutions of two linear equations ξex,y(t) =
−∆νx,y(i), where i enumerates the bunch number and,
therefore, t = τ ·i. The currents J1(t) and J2(t) vs. time t
for the TEV33 operation scenario with 140 p bunches and
121 p̄ bunches are shown in Fig.4. The patterns of these
currents have to be repeated periodically with the Teva-
tron revolution period of about 21 µs. Positions of all
antiproton bunches are marked by circles in Fig.4. Min-
imum bunch spacing is τ = 132ns. Two gaps between
bunch trains are seen, too; thus, the total number of
bunches Nb = 121 is less than 159=21µs/132 ns (if every
seventh bucket is filled in the Tevatron). The maximum
current is about 2.2 A. The currents J1, J2 have compli-
cated waveforms needed to compensate the tune shifts
seen in Fig.1. The result of implementing these lenses
would be that all core particle tunes of all the bunches
would become identical.

Fig.5 shows the initial 121 bunch tunes and the result-
ing bunch tunes assuming a 10% compensation error (see
circles in the lower left corner). Such an error may be due
to current mismatch, inadequate beam-beam model or
imprecision of the single bunch tune diagnostics. Again,
without errors, the result of compensation would look
like a point in Fig.5.

Linear electron lenses with an electron beam radius
wider than the rms p̄ size almost do not distort the foot-
print of each bunch [7], and, therefore, the compensation
of the bunch-to-bunch tune spread only will give about a
two-fold reduction of the tune area covered by the Teva-
tron p̄ beam.
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FIG. 5. Resulting p̄ bunch tune shifts (core particles only)
with 10% error of the compensation.

B. Compensation of nonlinear beam-beam effects

The interaction with other than a wide constant-
density electron beam will not only shift the antipro-
ton beam tunes, but will also distort the p̄ footprint in
a way which depends on the transverse electron charge
distribution, e − p̄ separation, crossing angle in the set-
up, etc. Let us consider the simplest example of the
footprint due to “head-on” collisions of round Gaussian
equal size proton and antiproton beams as shown in
Fig.6. There, the large leaf shows betatron horizontal
and vertical tunes (in units of the beam-beam parame-
ter ξp ≡ NIPNprp/4πεn) for antiprotons with different
betatron oscillation amplitudes. E.g., a zero amplitude
particle has tunes ∆νz(0, 0) = +ξp, very large amplitude
particle tunes are not shifted at all ∆νz(∞,∞) = 0, and
tunes for horizontal and vertical amplitudes of (1,2,3,4)×
the rms beam size σ are presented and labeled.

The spread of the betatron frequencies (footprint) may
enhance dynamic diffusion of particles due to high order
resonances, increase radiation background in detectors,
and limit beam lifetime and luminosity.

With the use of an electron beam one can in principle
shrink the p̄ footprint to a point if a) the electron trans-
verse charge distribution ρe(r) is the same as in the pro-
ton beam ρp(r); b) the p̄ beam distribution at the “elec-
tron compressor” is the same as at the IPs (but scaled in
size and with zero dispersion); and c) the total electron
beam charge eNe = JL/(βec) on the path of the p̄ beam
(e.g. over the length L of the central solenoid in Fig.2)
satisfies the equality condition of the beam-beam tune
shifts. This equality condition for protons and electrons
is:
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ξe ≡ −Nerp(1 + βe)
4πεn

= −ξp. (5)

For simplicity, if we assume equal horizontal and verti-
cal emittances and beta functions for antiprotons at the
electron beam “compressor” device, then from Eq.(5) we
get

Ne = NIPNp/(1 + βe). (6)

This gives for TEV33 Ne ≈ 4.5 · 1011 for βe = 0.2. For
L = 3 m one needs J = 1.44A.

Evidently, it would be ideal to collide all three beams
in one interaction point (IP). Then, under conditions a),
b) and c) the electromagnetic force due to protons can
be compensated by electrons and the antiprotons would
experience no total kick at the IP. Unfortunately, in that
case the non-relativistic electron beam will affect protons
almost as effectively as antiprotons (see Section IV.D be-
low) and it is not desirable. In addition, stability of
the electron and antiproton beams (see Sections III and
IV) prefers larger electron and antiproton beam sizes and
lower current densities. Since the size is about the proton
beam size, the electron beam is better installed at a large
beta function location, e.g. at βz = 200 where σz ≈ 0.8
mm rms, and it definitely should not be set at the inter-
action point, where the sizes are the smallest (about 30
µm rms at the IP β∗ = 37 cm), and vary over distances
of about the bunch length β∗ ∼ σs. Moreover, there is
no space at the interaction region for the necessary ad-
ditional equipment. Good candidates are some locations
near the Tevatron IPs where the beta-functions can be
as big as βp '1000 m, but at present there is no avail-
able space in the superconducting magnet lattice for the
electron beam set-up at the locations where the the hor-
izontal and vertical βp are the same, and the dispersion
function is equal to zero. Zero dispersion is desirable to
avoid the possibility of synchro-betatron effects. Another
possibility is to set the device at some other location,
most probably in one of the Tevatron straight sections.
The ideal straight section would provide a) equal hori-
zontal and vertical beta-functions, and b) zero (or mini-
mum) dispersion over the region of interaction with the
electron beam, c) betatron phase advances between the
IP and the electron beam set-up to be multiple of 2π.

Rather effective footprint compression can be achieved
even with non-Gaussian electron charge distributions.
For example, Fig.6 demonstrates the beam footprint
compressed by an electron beam with charge density pro-
file proportional to ρe(r) ∝ 0.83

1+(r/σ)8 - as shown by the
line marked by crosses in Fig.7. For convenience of pre-
sentation we have separated the smaller footprint hor-
izontally (in fact it would be around zero tune point
ν(x,y) = 0) from the larger “leaf” due to “head-on” col-
lisions with round Gaussian proton beam with charge
distribution ρp(r) = (eNp/2πσ2) · exp(− r2

2σ2 ) - as shown
by the solid line in Fig.7. One can see a significant reduc-
tion (6 times) of the tune spread with use of the electron
beam.
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FIG. 6. “Electron compression” of the “head-on” p̄ foot-
print. Tunes are given in units of the head-on beam-beam
parameter ξp. Numbers in parentheses show the horozintal
and vertical betatron amplitudes in units of the rms antipro-
ton beam size. The case with electron beam is displaced for
clarity.

Of course, the picture of the footprint compression is
idealized. The beam-beam footprint itself can be signif-
icantly distorted by “imperfections” such as a crossing
angle at the interaction point, or numerous parasitic in-
teractions in multibunch colliders at the locations where
two beams do not actually collide but still interact via
long-range electromagnetic forces. The collider focusing
lattice itself is not linear and this should also be taken
into account. An additional difficulty is that nonlinear-
ities are numerous and distributed over the collider ring
while only one or very few electron beam set-ups can be
installed. Finally, it does matter what is the ratio of the
electron beam length to the beta-function at its location.
Indeed, the proton bunch length of about σs ' 37cm
is comparable to beta-function at the interaction point
β∗. Therefore, the betatron phase advance for antipro-
tons at the main IP is large ψz =

∫
ds/βz ' σs/β

∗ ' 1.
In contrast, the electron beam length of about 2-3 m is
much less than the beta function at the compensation
set-up, and the corresponding betatron phase advance
of antiprotons passing the electron beam is very small
ψz ' 0.01−0.02. Thus, the electron beam kick looks like
a delta-function when transformed to the main IP. Conse-
quently, such a short impact from the electrons contains a
lot of resonance harmonics, although the average actions
due to proton and electron beams are the same. One can
reduce the betatron tune spread with a non-linear lens,
but this alone does not assure that the motion is more
stable than that with no compensation, because the res-
onance strengths sometimes can be more important than
the tune spread.
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The electron beam set-up can use several “knobs” in
order to obtain better compensation: the transverse dis-
tribution ρe(r), the separation of the electron beam from
the p̄ orbit, the angular separation between the beams,
and the choice of the horizontal/vertical antiproton beta-
functions in the electron beam region. There are also
a few less flexible options like variation of the electron
beam radius a along the set-up, and the installation of
several electron beam devices. For any specific goal (e.g.
“head-on” beam-beam interaction compensation) only a
few of the “knobs” need to be implemented for the device
to be useful.
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FIG. 7. Charge distributions. Solid line - Gaus-
sian for antiprotons, ×-marked line - electron beam with
ρe(r) ∝ 0.83

1+(r/σ)8
, dashed line is optimized electron beam dis-

tribution - see Eq.(8) and text.

In Ref. [8] we discuss the possibility of adding a sin-
gle thin nonlinear lens to some arbitrary nonlinear lattice
in such a way that the particle motion in the modified
structure would become resonance-free, though nonlin-
ear, and the beam of particles would have a zero foot-
print. A numerical method to construct such maps is as
follows: let us choose the tune equal to a resonant one,
e.g. the 20th order resonance. There is a simple way
to determine whether the motion of a particle with each
particular initial condition has that frequency or not: one
calculates the squared differences of coordinates and mo-
menta at the beginning and at the end of 20 successive
map transformations. E.g. in the normalized variables
x =

√
ε cos(ψ) and x′ = −

√
ε sin(ψ) (ψ is the betatron

phase), one takes the summation over some region of ini-
tial conditions and gets an optimization function F̃ :

F̃ =
∑
j

(xf − xi)2 + (x′f − x′i)2

x2
i + (x′i)2

, (7)

where symbols i and f are for initial and final normal-
ized coordinates and angles, respectively, and the index
j denotes different phase space elements of initial condi-
tions. The denominator of this expression is added in or-
der to give trajectories with small and large amplitudes
the same weight. When this function is equal to zero
F̃ = 0,

1) the frequencies of all particles are equal to the par-
ticularly chosen value (1/20 in our case);

2) the strength of the resonance is equal to zero.
For resonant islands we get the same average frequency

for all phase space elements of the island, but the motion
inside the island has its own frequency. It gives a nonzero
difference of initial and final conditions after the number
of turns is equal to the number of the resonance (20 turns
in this case). When the function F̃ is equal to zero, the
motion inside the island is degenerate, so the resonance
strength is equal to zero.

A numerical code has been developed that deals with
minimization of the function F̃ by variation of the trans-
verse electron charge distribution. This is chosen as a
sum of Gaussian distributions with different rms values:

ρe(r) =
6∑

n=1

Cnexp(−
n · r2

4σ2
), (8)

here Cn are variable coefficients for optimization and σ
is the rms transverse proton beam size at the location
of the electron beam. In simulations the electron beam
produces a delta-function kick because of its short effec-
tive length, while the proton bunch length is presented
as a number of short slices. The numerical code finds co-
efficients Cn depending on the proton bunch length and
the beam-beam parameter ξp. The synchrotron ampli-
tude of antiprotons is taken to be zero. In the process of
optimization the value F̃ usually decreases by a factor of
1000.

For example, for σs = 2β∗, equal horizontal and ver-
tical beta-functions β∗x = β∗y = 35cm, tune shift (due
to protons) ξp = 0.05, the optimization results in co-
efficients C1 = 0.576, C2 = 0.048, C3 = 0.08, C4 =
0.042, C5 = 0.04, C6 = 0.4 in the units of a Gaussian
proton charge distribution corresponding to C2 = 1, C1 =
C3 = C4 = C(etc.) = 0. The dashed line in Fig.7 displays
the resulting “optimized” distribution, and the solid line
is for the Gaussian distribution.

C. “Electron compressor” to eliminate crossing angle

In principle, the “electron compression” allows for the
elimination of the crossing angle at the interaction point.
At present, a crossing angle is believed to be the best
way to reduce the beam-beam tune shift and tune spread
due to near-IP interactions. (Parasitic collision spacing
is about 20 m = 1

2c · 132 ns). A full crossing angle at the
IPs of about 0.2 mrad reduces the luminosity by about
50% [2].
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Two or four near-IP “head-on” collision points will re-
sult in about three or five times larger tune shift and tune
spread. Therefore, a proportional increase of the electron
beam current J from about 1.5 A to 4.5-7.5 A would be
required to compensate these additional crossings. The
only limitation is that in order to keep the higher cur-
rent beam stable, a stronger magnetic field is needed. As
shown in Section IV, the necessary field is approximately
proportional to the tune shift due to electrons, and thus,
to the current.

By eliminating the need for a crossing angle, this high-
current “electron compression” can recover a factor of
two in the luminosity, or provide the same luminosity
with half the antiprotons. Two or four additional inter-
action points at high beta-functions cost little in the rate
of pbar consumption since the luminosity at these two
additional “head-on” collision points is small L ∝ 1/β,
β � β∗.

III. ELECTRON BEAM FOR BEAM-BEAM
COMPENSATION

As mentioned above, our beam-beam compensation
proposal is based on a low energy (dozen kV), high-
current (few Amperes) electron beam colliding with an-
tiprotons in a strong magnetic field of several Tesla - see
Fig.2. The electron source is the oxide cathode of a diode
electron gun immersed in a comparatively weak magnetic
field. The electrons enter a strong solenoid magnetic field
straight interaction region experiencing adiabatic beam
size compression which allows an increase in the current
density. At the set-up exit, the beam follows the mag-
netic field lines directed to the collector. In general, such
a configuration is similar to “electron cooling” devices
[9]. In this Section we consider the electron beam itself,
and start with the choice of electron energy.

The electron energy Ue = mβ2
ec

2/2, or, equivalently,
the electron velocity βe, is a trade off among several fac-
tors. Some of them, like space-charge potential, drift ion
instability, current modulation time, etc. - prefer higher
Ue and βe; others, e.g. power of the electron gun and
the modulator power supply, adiabatic compression, to-
tal beam current - prefer smaller beam energy.

Let us start with the general requirements on the elec-
tron beam for beam-beam compensation. Firstly, its size
must be about the same or few times the rms p̄ beam
size σz =

√
βzεnp̄/γp̄. For the small emittance of TEV33

εnp̄ = 2.5 · 10−6m one gets σz = 0.51mm at a beta func-
tion βz ' 110m (see Table II). If one modifies the ex-
isting lattice and provides a high-beta, zero-dispersion
region in the Tevatron, one would have σz = 0.77 mm at
βz = 250m. For simplicity, we will consider an electron
beam with radius of a = 1mm and constant transverse
distribution. From Eqs.(3) and (6), the electron beam
current J scales with electron velocity as:

J = J0 ×
βe

1 + βe
, (9)

where the constant J0 ≈ 9.9A for the 2-m long “electron
lens” discussed in Section II. The maximum current of a
space-charge limited diode electron gun is given by the
Child-Langmuir law (see, e.g. [10])

J = P · U3/2
a , (10)

where the perveance P is a gun geometry dependent pa-
rameter, and Ua is the voltage difference between the
cathode and the anode electrodes of the gun. Usu-
ally, perveance is presented in units of microperveance
P = µP · 10−6A/V 3/2. In our case Ue = Ua and combin-
ing Eqs.(9) and (10) we get a minimum electron energy
of

Ue ≈
1.2J0

P
√
mc2

=
16.3[kV ]
µP . (11)

The electron lens requires modulation of the electron
current with a characteristic time of τ ' 132 ns. This can
be done by varying the cathode-anode voltage Ua from
zero to Ue. If the cathode anode capacitance is approxi-
mately Ca = 20pF, then the reactive power in the modu-
lator circuit is about Wm = CaU

2
e /(2τ) ≈ 20[kW ]/µP2.

Thus, a higher gun perveance is beneficial for beam cur-
rent modulation. The corresponding beam current and
power are

J ≈ 2.1[A]√
µP ; W = J ·Ue =

34[kW ]
µP3/2

. (12)

The energy recirculation technique used in “electron
cooling” devices [9] allows for a reduction in the power
dissipated on the collector. However, the high voltage
power supply still has to provide power proportional to
the total current Wc = J ·Uc, where Uc = 1...2 kV is the
cathode-collector potential difference. Therefore, since
it is beneficial to reduce the beam current and power, a
high gun perveance is needed.

For a diode gun with a flat cathode and a Pierce
electrode, the microperveance is equal to [10] µP =
7.3(a/d)2, where a is the beam (cathode) radius and d is
the cathode-anode distance. A rule of thumb is that a
good current density homogeneity can be reached if the
ratio of (a/d) is less than 1/2, i.e., µP is less than 2. Sev-
eral times higher perveance (up to 10) with good beam
quality can be achieved by the use of a convex cathode
immersed in a magnetic field of the order of 1 kG [11] -
an arrangement quite appropriate for our purposes. We
rely on the possibility of making the electron gun for the
electron lens with µP between 1 and 3, corresponding
to Ue from 16kV to 5.5kV, while for numerical estimates
elsewhere we use Ue = 10kV and βe = 0.2.
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A. Lower limit on the electron energy

The lower limit on the electron energy is due to two
effects. Firstly, the electrons must be fast enough to pro-
vide the necessary current modulation; and, secondly, the
electron kinetic energy must overcome the electron space
charge potential in a round vacuum chamber.

Let us consider the time structure of the defocusing
kick (or the tune shift) produced by the electron lens.
Fig.8 demonstrates the effect of a step-like current mod-
ulation with pulse duration of tp (presented in the upper
plot) on the antiproton bunches. Let us denote t = 0
the moment when the front of the electron pulse enters
the interaction section. As the antiproton beam passes
through the oncoming electron current pulse, the max-
imum deflection will be seen by test particles which at
t = 0 are distanced by (1 + βe)L/βe from the input
end of the device. We define the corresponding time
τg = (1 +βe)L/cβe as the ”kick growth time”. The max-
imum kick lasts over time interval of tf = tp−τg which is
synchronized with the bunch arrival (see lower diagram
in Fig.8). Behind that bunch, the kick amplitude van-
ishes over the growth time. The analytical expression for
the tune shift is as follows:

ξe(t) ∝
∫ t

−t+2·max(0,t−(1+βe)l/cβe)

J(t′)dt′. (13)

Let the required flat top of the kick acquired by p̄s to
be tf =5 ns, and the required “no-impact time” to be
the same tn = 5 ns; then, summarizing all times in Fig.8,
the condition of 264ns > tf + 2L(1 + βe)/cβe + tn must
be satisfied in order to have no impact on preceding and
following bunches. This gives βe > 0.06 for L = 2 m or
corresponding to a kinetic energy Ue > 0.9kV. Since one
needs to modulate the electron current in order to equal-
ize the bunch-by-bunch tune shift, the electrons have to
be fast enough to provide different defocusing kicks on
different bunches. βe =0.2 satisfies the requirement.

One can make two remarks: firstly, if the current pulse
duration is less than the growth time tp < τg , then the
electron beam does not work in full strength; secondly,
for a bunch spacing in the ring of τ , the electron current
pulse duration must be less than tp < 2τ−2(1+βe)L/cβe
otherwise neighboring bunches will be affected. Thus, a
rectangular pulse duration of tp = τg corresponds to the
device maximum strength. The length of the electron
beam has to be less than L < cβeτ/2(1+βe) because the
current pulse shape can not be exactly rectangular, and
some flat top of the kick is required.

An example for TEV33 yields τ = 132 ns, βe = 0.2,
L = 2 m. This satisfies the condition of τg = 40 ns
< τ and the requirements on the pulse length is tp ≤
264− 40 = 224 ns. Since the pulse shape of the current
modulation can not be exactly rectangular, the pulse full
width at half amplitude has to be somewhat smaller (but
still longer than τg), e.g. 120-180 ns.
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FIG. 8. Electron current modulation scheme.

The other limit on the minimum voltage (kinetic en-
ergy) is set by the electron beam space charge potential
Usc with respect to the grounded vacuum chamber walls:

Usc =
2eNe
L

(
ln(

b

a
) +

1
2

)
≈ 500[V ]

(
ln(

b

a
) +

1
2

)
, (14)

where Ne = JL/(eβec) ≈ J0L/(1.2ec). This gives us
Ue > Usc = 2.1 kV for a chamber radius of b = 40 mm
and a = 1 mm beam radius.

B. Electron beam in a magnetic field

The electron lens set-up needs to have a longitudinal
magnetic field in order to keep the electrons stable, to
make the beam more rigid, to transport it from the cath-
ode through the interaction region to the collector, and
to obtain a smaller beam size. The equation for paraxial
electron oscillations under the impact of a solenoidal field
B, the space-charge force due to the electron beam, and
the force due to incoming antiprotons is:

d2r

ds2
+ r(

1
F 2
B

− 1
F 2
e

− 1
F 2
p̄

) = 0, (15)

where s is the longitudinal coordinate along the electron
orbit, and r = |x+ i · y| is the oscillation amplitude. The
effective focal length due to the magnetic field B is

FB =
2γeβemec

2

eB
≈ 3.3[cm]

γeβe
B[kG]

, (16)
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which for 10kV electrons yields FB = 0.66[cm]/B[kG].
It has to be compared with the defocusing length due to
electron space charge which is given by

Fe =

√
mc3γ3

eβ
3
ea

2
e

2eJ
≈ 2.9[cm]βeγ3/2

e

√
1 + βe, (17)

where we use Eq.(9) for the required electron current.
The minimum defocusing length due to the antiproton
beam is

Fp̄ =

√
γeβ2

e

√
2πσsσ2

p̄mc
2

e2Np̄(1 + βe)
≈ 4.1[cm]βe

√
γe

1 + βe
, (18)

where we take Np̄ = 6 · 1010, σp̄ = 0.9 mm (the p̄
beam size) and σs = 14cm (the rms bunch length). For
10kV electrons FB = 0.66[cm]/B[kG], Fe = 0.64cm and
Fp̄ = 0.74cm. The beam is stable if the focusing term in
Eq.(15) is stronger than the two defocusing terms:

1
F 2
B

≥ 1
F 2
e

+
1
F 2
p̄

, (19)

The required magnetic field for a 10 kV electron beam is
1.4 kG. Since the device uses the electron beam once over
a passage, then, in principle, one could consider using no
magnetic field at all if the electron beam energy is high
enough to have only minor electron beam disruption over
the length of the pbar bunch Fp̄ � σs. For σs = 14cm
this yields an electron kinetic energy of Ue � 12 MeV.
Taking into account the high average current, one can
see that the electron beam power exceeds dozens of MW.
This makes the use of relativistic electron beams very
impractical for the beam-beam compensation.

As we will discuss later in Section IV, a much stronger
solenoid field of the order of 4-6 T is necessary to main-
tain stability of the antiproton beam and reduce x−y cou-
pling due to electron beam distortions. In such a strong
field, magnetic focusing dominates the electron dynam-
ics. Each electron performs very fast Larmor oscillations
with frequency ωL = eB/(γemc) and spatial period of
λL = 2πve/ωL = πFB ≈ 2.1[cm]/B[kG]' 0.5mm. Their
orbits can be represented as tiny (micron scale) Larmor
circles moving along the magnetic field line.

The effect of a space charge field ~E is that each of these
circles starts to rotate slowly (drift) around the beam axis
while staying at the same radius, i.e. the round beam
remains round. The drift velocity in crossed electric and
magnetic fields ~E and ~B is equal to:

~vd = c
[ ~E × ~B]
B2

. (20)

The space charge electric field inside a constant current
density electron beam with je = J/πa2 is proportional
to radius ~E = 2je~r/βe. The angle θd of the drift rota-
tion over the time interval t does not depend on radius
θd = vdt/r = 2jct/βeB. For example, the angle over the

beam passage of L = 2m in a B = 40 kG field is about
θd ≈ 240o. The electric field due to a Gaussian p̄ beam
is not linear, and the rotation angle θd is no longer in-
dependent of r, and electrons with larger r perform drift
rotation on different (smaller) angles. However, the dif-
ference is negligible for our parameters - see detail stud-
ies in Ref. [12]. The magnetic forces due to electron and
antiproton currents produce additional drifts similar to
electric ones, but their contributions are β2

e and βe times
smaller, respectively, and, therefore, negligible.

The required current density for a 2 mm diameter
beam is je = J

πa2
e
≈ 315 βe

1+βe
A/cm2, or about 53 A/cm2

for a 10kV electron beam. On the other hand, the oxide
cathode lifetime goes down greatly if the current density
exceeds 5-10A/cm2 (see Ref. [13] and references therein).
To reduce the cathode current density limit, one can use
adiabatic magnetic compression in which the beam is
born on the cathode with a larger radius ac in a weak
field Bc and transported to the region of stronger mag-
netic field B, with conservation of the adiabatic invariant
Bca

2
c = Ba2. For the electron lens with cathode current

density of about 2.1A/cm2 and ac = 5 mm, the max-
imum “shrinking” ratio R ≡ B/Bc ≡ a2

c/a
2 should be

about 25, e.g. B = 40 kG, Bc = 1.6 kG. This looks quite
feasible technically. In principle, electrostatic focusing in
the electron gun with use of special electrodes can further
increase the compaction factor and the current density in
the solenoid.

Non-linear beam-beam compensation and the footprint
compression require precise control of the transverse elec-
tron charge distribution ρe(r). A natural possibility is to
do that using near cathode electrodes in the diode elec-
tron gun. If one applies a potential to these electrodes
which is different from the cathode potential, then the
distorted electric field distribution on the cathode sur-
face will decrease (or increase) the electron emission from
different radial areas of the cathode.

C. Effect of ions

While passing through the vacuum chamber, the elec-
tron beam ionizes residual gas atoms and produces elec-
trons and positively charged ions. Under certain con-
ditions both these electrons and ions may concentrate
in the electron beam. This could result in a) changing
the total charge density within the beam, i.e. changing
the effectiveness of the beam-beam compensation, and b)
developing the so called two-beam drift instability. Mea-
sures should be applied to ensure proper removal of the
residual particles.

Ionization of residual gas by electrons produce ions
with the rate

dni
dt

= σionizneven0 , (21)

where σioniz is the ionization cross section, ne is the elec-
tron beam density, and n0 is the residual gas density. A

9



useful quantity is the “neutralization time”

τn =
1

σionizven0
, (22)

the time in which the electron beam is fully neutralized
if all produced ions remain in the beam. For βe = 0.2
(10 kV) the total cross section (including initial, sec-
ond, etc. ionization) for air is approximately σioniz ≈
2 · 10−17 cm2 [14]. At room temperature the residual gas
density is n0 ≈ 3.2 · 1016P (Torr) cm−3. So, the neutral-
ization time is approximately

τn ≈ 2.5 · 10−10/P (Torr) s. (23)

E.g. τn ≈ 0.25 s if P = 10−9 Torr.
Drift instability is the main limitation on the beam

current in the presence of ions. The origin of the phe-
nomenon is the exponential amplification along the beam
of a small initial separation of the electron and ion beams
at certain frequencies. This amplification results in an in-
stability if the amplification coefficient is larger than the
feedback coefficient from the beam end to the beam be-
ginning. Theoretical analysis of the instability is given in
[15,16] and agrees well with experimental investigations
of the fully neutralized (ni = ne) electron beam [15]. The
stability threshold current density is found to be about

je <
v2
eB

3.8Lc
. (24)

Taking this expression one can estimate the acceptable
ion density for the electron compressor

ni
ne

<
v2
eB

4Lcje
≈ 0.8

B[kG] β2
e a

2[mm]
L[m] J [A]

. (25)

If βe = 0.2, B = 40 kG, a = 1 mm, J = 2 A, L = 2 m
then ni/ne < 0.13. Therefore, though the ions should be
cleaned out from the beam in order to avoid instability,
the value is rather relaxed.

A more stringent requirement follows from the condi-
tion that the total charge distribution remain controllable
within at least a few percent, i.e., ni/ne < 0.01.

FIG. 9. Changing of the electron beam potential well by
the cleaning electrode.

The potential well of the electron beam prevents the
residual ions from getting out of the beam in the trans-
verse direction. The potential at the axis is given by Usc
in Eq.(14). One can see that since the beam radius a
is smaller in the central part of the electron lens set-up,
then Usc is bigger there than at the gun and collector,
and this forms a longitudinal trap for ions. The ions can
be removed from the beam if one ensures that either a)
ions may escape to the collector or gun, i.e. the ratio b/a
remains constant and the potentials at the collector or
gun allows the ions to enter; or b) one uses special suf-
ficiently long cleaning electrodes to produce a transverse
electric field Ec larger than the field due to electron space
charge Ec > 2πaene (see Fig.9).

Let us now suppose that the residual ions can exit
at the beam edges either via cleaning electrodes or the
gun and collector, and let us assume that the ratio b/a
is constant along the beam. The ions are trapped and
their density ni(s) increases until the influx of ions due
to ionization is balanced by the loss due to their own
longitudinal field E = Ue/ne dni(s)/ds. The resulting
approximate shape of the residual ion density looks like
ni(s) ≈ nmaxi (1− (2s/L)2)1/3, with the maximum

nmaxi = ne

(
4τcωia

√
(1 + 2 ln (b/a))/3
πL

)−2/3

, (26)

where the ion plasma frequency is ωi =
√

2πnie2Zi/Mi.
Equations (22) and (26) give an estimation for the resid-
ual gas pressure if the limit on ni/ne is set. For example,
if βe = 0.2, a = 1 mm, b = 30 mm, J = 2 A, L = 2 m,
and ions are single ionized nitrogen molecules, then the
condition nmaxi /ne < 10−2 results in τn > 0.028 s, i.e.
the vacuum should be better than P < 9 · 10−9 Torr.

One should also mention several particular problems
associated with the ionization electrons. These elec-
trons are highly magnetized, so they can move only
longitudinally and drift around the beam. Since both
the electron gun and collector have negative potential
with respect to the main vacuum chamber, the elec-
trons are trapped. However, they have at least two
ways to leave the beam. First, they are heated by the
main beam until their energy increases enough to leave
the potential well. The heating rate of this “electron
wind”is d(W/Ue)/dt ≈ 4Lce2/(mvea2(1 + 2 ln (b/a))),
where Lc ∼ 7 is the Coulomb logarithm. Second, the
center of the electron trajectory jumps by approximately
a Larmor radius each time the electron is reflected from
the potential wells of the electron gun or collector (if the
Larmor circle step is larger than the length over which
the potential changes). This results in a diffusive (or sys-
tematic if the axial symmetry is not perfect) loss of these
electrons.
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FIG. 10. Cleaning electrodes with low conductive inser-
tions. Dashed lines show trajectories of trapped ionization
electrons.

Another problem is that these ionization electrons may
be trapped and stored in the vicinity of the cleaning elec-
trodes and their charge may change significantly the dis-
tribution of potentials. It was found in [17] that this
problem can be avoided if one uses insertions made from
low conductive material such as a semiconductor glass
(see Fig.10).

IV. SIDE EFFECTS ON HIGH-ENERGY BEAMS

A. Electron Beam Distortions in Beam-Beam
Compensation Set-Up

As we have shown in the previous Section, collision
with a round antiproton bunch in a strong magnetic field
conserves axial symmetry and the radial size of the elec-
tron beam. Therefore, the electron beam space charge
forces are the same for antiprotons at the head and at
the tail of the antiproton bunch. This is no longer true if
the electron or antiproton beam is not round. The elec-
tron beam axisymmetry can be assured by using a round
cathode in the electron gun and by an appropriate choice
of the magnetic field in the transport section of the set-
up. The antiproton beam roundness could be achieved in
a number of Tevatron locations where vertical and hor-
izontal beta-functions are the same βx = βy. However,
this condition can not be always fulfilled – see, e.g., Table
II above for the proposed electron lens parameters.

The electron beam cross section becomes a rotated el-
lipse as the tail of a non-round antiproton bunch passes
it, whereas the head of the bunch sees the original undis-
turbed round electron beam. Detailed numerical stud-
ies of the effect can be found in Ref. [12]. The electron
beam distortions are of concern because: 1) the distor-
tion of the space-charge forces which play a role in the
beam-beam compensation; 2) in addition to the desired
defocusing effect, electric fields of the elliptic electron
beam produce x − y coupling of vertical and horizontal
betatron oscillations in the antiproton beam; 3) there ap-
pears a “head-tail” interaction in the antiproton bunch
via higher order wake fields propagating in the electron
beam.

The electron beam distortions can be found analyti-
cally. We start with the continuity equation for the elec-

tron charge density ρe(x, y, s, t):

∂ρe
∂t

+ div(ρe~v) = 0, (27)

where ~v(x, y, s, t) is the velocity of electrons. Since
the longitudinal component of the velocity is constant
vs = βec and all longitudinal scales (like the antipro-
ton bunch length σs or electron beam length) are much
longer than the transverse scale, one can neglect the term
∂/∂s(ρvs) in (27). We have separated the fast small
amplitude Larmor motion and the slow large amplitude
drift with velocity ~vd in Eq.(20). The latter is the major
source of the electron beam distortion, and in the fol-
lowing analysis we consider ~v = ~vd. If we assume the
unperturbed electron charge distribution to be axially
symmetric ρe(t = 0) = ρ0(r), and that the maximum
density distortion is small ρe = ρ0 + δρ, δρ � ρ0, then
in the lowest order one gets from (27):

∂δρ

∂t
+ ~vd · ~5ρ0 + ρediv~vd = 0. (28)

The third term is equal to zero because div~vd = 0. The
gradient in the second term can be written as ~5ρ0 =
2~rdρ0(r2)/d(r2), and thus, we obtain:

~vd · ~5ρ0 =
2c
B2

dρ0(r2)
d(r2)

[ ~E × ~B] · ~r. (29)

The electric field of the round electron beam does not
contribute to the product above since it is proportional to
~r. The contribution due to electron beam space charge
can be ignored as long as the electron charge density
distortions are small with respect to ρ0(r) The major
reason for the density change δρ is the antiproton beam
space charge force. The electric field of the elliptic Gaus-
sian relativistic antiproton beam with rms sizes σx and
σy = R · σx is given by :

~E = −eNp̄ · λ(s) · ~5U, (30)

where the linear density of antiprotons is normalized as∫
λ(s)ds = 1, and the two dimensional effective interac-

tion potential U(x, y) is [18]:

U(x, y) =
∫ ∞

0

dq
1− e

− x2

2σ2
x(1+qR)

− y2

2σ2
y(1+q/R)√

(1 + qR)(1 + q/R)
. (31)

Therefore, after some mathematics we get:

δρ(x, y, t =
s

(1 + βe)c
) =

(∫ s

−∞
λ(s′)ds′

)
×

×2eNp̄
B

dρ0(r2)
d(r2)

·
xyI(x, y)(σ2

x − σ2
y)

σ2
xσ

2
y

, (32)
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where now s is the coordinate inside the antiproton bunch
1 and

I(x, y) =
∫ ∞

0

dq
e
− x2

2σ2
x(1+qR)

− y2

2σ2
y(1+q/R)

(1 + qR)3/2(1 + q/R)3/2
, (33)

e.g., I(0, 0) = 2R
(1+R)2 . The major features of the dis-

tortion are: a) it is absent in the case of a round an-
tiproton beam when σx = σy; b) it performs two varia-
tions over azimuth δρ ∝ xy ∼ sin(2θ); 3) it diminishes
as the solenoid field B increases, or as the antiproton
intensity Np̄ decreases; 4) most of the distortion takes
place at the radial edge of the electron beam, and, since
dρ0(r2)/d(r2) ' ρmax0 /a2, a wider electron beam receives
smaller density distortions during the interaction. Fi-
nally, the scaling of the maximum distortion strength is:

δρmax

ρmax0

' 0.2eNp̄
a2B

≈ 0.6[Np̄/6 · 1010]
a2[mm]B[kG]

, (34)

where the value of 0.2 comes from geometrical factor
∝ xy · I(x, y). For example, the distortion is about 1.5%
for a 1 mm radius electron beam in a B = 40kG solenoid
field. Note, that as soon as the elliptic distortion appears
it starts a drift rotation in the crossed fields of the elec-
tron space charge and the solenoid field. It is important
that during the passage of the antiproton bunch (about
±2σs/c = 2ns), the rotation is small. For example, for
B =2T the angle is about θd ≈ 4jσza/βeB ≈ 0.1rad� 1.
Thus, ignoring the factor ~vd · ~5δρ in Eq.(28) is justified.

Fig.11 shows the electron beam distortion calculated
analytically with Eq.(32). The top left plot in Fig.11
shows contour lines of constant density for the electron
beam with a particular initial distribution of

ρ0(r) =
1

1 + (r/a)2µ
, µ = 3, a = σx = 0.61 mm. (35)

Here and below the x and y coordinates are given in units
of σx.

Constant density lines for the Gaussian distribution
in the antiproton beam with σx = 0.61 mm and σy =
0.31mm are presented in the top right plot. The lower
left corner of the Figure shows the change of the elec-
tron charge density δρ(x, y) after passage through an an-
tiproton bunch with Np̄ = 6 · 1010 in a magnetic field
B = 4kG. With such a small solenoid field the distor-
tion is very large δρmax ' 0.25 and the resulting electron
beam shape ρ = ρ0 + δρ is clearly a rotated ellipse as
shown in the lower right plot. In this case, the space
charge fields are very different for the antiprotons in the
head and in the tail of the bunch. The solenoid field in

1i.e. s = −∞ is for the bunch head and
∫ s
−∞ λ(s′)ds′ is

proportional to the antiproton charge which passed through
the given part of the electron beam.

the electron lens set-up will be about 10 times stronger
B ≈ 40kG, and consequently, we expect 10 times smaller
electron beam distortions.

As we noted in Section II, the electron beam has to
be 2-3 times wider than the antiproton beam for ade-
quate linearity in the electron lens set-up. According to
Eq.(34), this also helps to reduce δρ by a factor 4-9 [12].

B. Coupling due to distorted electron beam.

Electric and magnetic fields of the elliptic electron
beam lead to x − y coupling of vertical and horizontal
betatron oscillations in the antiproton beam. Since orig-
inally the electron beam is round, the head of the an-
tiproton bunch experiences no coupling force. But, since
the electron density distortion grows as

∫ s
λ(s′)ds′ (see

Eq.(32)), the coupling grows proportionally. Particles in
the head and in the tail of the bunch change their po-
sitions while performing synchrotron oscillations, thus,
an average coupling effect is about half of the maximum
coupling spread. The average coupling can be corrected
in the Tevatron, but there are no available tools to com-
pensate the spread in coupling. Therefore, the spread has
to be small enough in order not to affect the antiproton
beam dynamics.

The tunes of a small amplitude particle can be written
as

ν± =

[
(νx + ∆νx) + (νy + ∆νy)

]
2

±

±

√√√√[(νx + ∆νx) − (νy + ∆νy)
]2

4
+ |κ+ ∆κ|2, (36)

where νx and νy are the unperturbed horizontal and ver-
tical tunes, κ is a complex number describing the cou-
pling, and ∆’s represent the changes of these quantities
that arise from the interaction with the electron beam.
The tunes in the current Tevatron lattice are νx =0.585
and νy =0.575. For satisfactory operation of the Teva-
tron collider, the global coupling is corrected down to
value of |κ| ≈ 0.001 [19].

In terms of the two-dimensional potential V (x, y), the
horizontal tune shift is given by Eq.(1) - see Section II
above - and the coupling shift can be calculated as

∆κ =

√
βxβye

i(ψx−ψy)

4π
∂2V

∂x∂y
. (37)

In the case of an almost round electron beam with a
small elliptic distortion one can write V (x, y) = V0(r) +
Vskew(xy). The potential V0 and corresponding tune shift
for a round beam are given in Eqs.(2,3). Of course, a
perfectly round electron beam gives no contribution to
the coupling.
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Now, let us write the electron density distortion in the
form δρ(x, y) = xy·C(x, y) which emphasizes the product
xy and the rest is a slowly varying function of xy:

C(x, y) =
2eNp̄
B

dρ0(r2)
d(r2)

·
I(x, y)(σ2

x − σ2
y)

σ2
xσ

2
y

. (38)

The effective 2D skew potential can be found as a so-
lution of following equation

4Vskew = −4πδρ
rp̄
γp̄
, (39)

which is approximately equal to:

Vskew ≈
πrp̄
6γp̄

C(x, y) · r2 · xy. (40)

This yields a coupling magnitude of

|κ| ≈
√
βxβyrp̄

8γp̄
< C(x, y) · r2 > . (41)

The brackets < ... > denote averaging over antiproton
betatron oscillations. One can estimate the maximum
coupling spread using Eqs.(3, 37-41) together with the
approximate relation βx ' 3βy

|κ| ≈ |ξe|eNp̄
2
√

3σ2
xB
· < S(x, y) >≈

0.84 Np̄
(6·1010

σ2
x[mm]B[kG]

· < S(x, y) > .

(42)

Fig.9 shows the numerical factor S(x, y) for the two
electron distributions satisfying Eq.(35) with a = σx (left
plot) and another with a = 2.5σx (right plot). The maxi-
mum value of this factor Smax(x, y) is 0.7 for the slender
electron beam and 0.13 for the wider electron beam, and
it occurs at amplitudes of about the electron beam size.
The coupling vanishes for small and very large betatron
amplitude particles. The effect is larger in the plane of
the larger antiproton ellipse axis (horizontal in our case).

Consider a numerical example with the same param-
eters we used above: σx = 0.61mm, Np̄ = 6 · 1010,
ξex ' 0.01. The maximum numerical factor in Eq.(42)
is < S(x, y) >max≈ 0.5 · Smax(x, y), i.e. 0.35 for
a = 1σx and 0.065 for a = 2.5σx. With a solenoid field
of B = 40kG, one gets the maximum coupling spread
|κ| ' 2 · 10−4 for a thin electron beam , and 3.5 · 10−5

for wider electron beam. Both of these values are rather
small with respect to the Tevatron global coupling cor-
rection goal of about 0.001. Note, that two 2 m long
40 kG solenoids for the electron lenses will contribute a
static coupling of about |κ| ' 0.001.

C. Head-Tail Effect Due to Electron Beam

This section is devoted to the stability of the antipro-
ton beam interacting with an electron beam in the elec-
tron lens setup for beam-beam compensation in the Teva-
tron collider. Electron space charge forces cause trans-
verse “head-tail” coupling within the antiproton bunch

which may lead to a transverse mode coupling instabil-
ity (TMCI). A detailed theory, analytical studies and nu-
merical simulations of the effect can be found in Ref. [20].
Here we present estimates of the threshold longitudinal
magnetic field necessary to avoid the instability, and the
dependence of the threshold on electron and antiproton
beam parameters.

Low energy electrons can create significant transverse
impedance comparable with the intrinsic impedance of
the Tevatron ring, and this can result in a collective in-
stability of the antiproton bunch. The electron beam
is to be born on an electron gun cathode, transported
through the interaction region, and absorbed in the
collector. Therefore, each portion of electrons passes
through the antiproton beam only once, and only short
distance transverse wake fields are of interest. The phe-
nomenon is as follow: if the centroid of the antiproton
bunch head collides off the electron beam center, then
the electron-antiproton repulsion causes the electron mo-
tion. As the result, the electron beam has a displacement
when it interacts with the tail of the bunch. Thus, the
impact of the electron beam on the following antiprotons
depends on the transverse coordinate of the preceding
antiprotons. Such a “head-tail” interaction leads to the
TMCI.

This effect is similar to the ”strong head-tail” inter-
action via vacuum chamber impedance first observed a
long time ago in electron storage rings [21]. The TMCI in
the electron rings limits the maximum single bunch cur-
rent. In our case, the source of the coupling is the elec-
tron space charge which is the basic mechanism for the
beam-beam compensation and, thus, can not be avoided.
The way to counteract the instability is to increase the
electron beam rigidity, to make its motion during the col-
lision smaller. Naturally it can be done using a strong
longitudinal magnetic field in the interaction region. 2

a. Direct and Skew Wakes Conventionally, the anal-
ysis of relativistic beam stability relies on the wake func-
tion concept, see, e.g., [21]. Electromagnetic fields ex-
cited in an accelerator vacuum pipe vary over transverse
distances of about the pipe aperture b, which is usually
much larger than the beam radius a. That allows an ex-
pansion of the perturbation on dipole, quadrupole, and
higher order terms over a small parameter (a/b).

The situation is different for the case under study. The
electron beam space charge fields excited by antiprotons
have about the same transverse extent as the antiproton
beam, and this complicates the analysis. However, the in-
teraction can be described by the conventional approach
for a specific case when both the antiproton bunch and
the electron beam are homogeneous and bounded by the

2It is assumed that the Tevatron ring chromaticity can be
made close to zero, so that the “weak head-tail” [21] instabil-
ity is negligible.
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same radius a = ap̄. In this case electromagnetic wake
fields have a simple radial structure and can be easily
calculated.

To find the dipole wake function, let us consider a thin
antiproton slice with a charge q and offset ∆x traveling
through the electron beam. After interacting with the
slice, electrons acquire a transverse velocity given by

vxe =
2eq∆x

a2(1 + βe)γemc
. (43)

Such a kick causes transverse Larmor oscillations in the
longitudinal magnetic field B, and after a time interval
t, the electron transverse offsets are:

xe =
vxe
ωL

sin(ωLt); ye =
vxe
ωL

(
1− cos(ωLt)

)
, (44)

where ωL = eB/(γemc) stands for the Larmor frequency.
One can see that an originally horizontal displacement
∆x results in both horizontal and vertical displacements.
Taking into account the possibility of a vertical offset y,
we conclude that antiprotons at a distance s behind the
slice will experience momentum changes equal to

∆px(s) = −eqc
(
Wd(s)∆x −Ws(s)∆y

)
∆py(s) = −eqc

(
Ws(s)∆x+Wd(s)∆y

)
(45)

where we introduce the direct wake function Wd(s) and
the skew Ws(s) wake function:

Wd(s) = W sin(ks), Ws(s) = W
(

1− cos(ks)
)
, (46)

Wd,s(s) = 0, if s ≤ 0, and

W =
4πneLe

(1 + βe)a2(B/e)
, k =

ωL
(1 + βe)c

, (47)

where ne = Je
eπa2ve

.
Depending on the parameters, one or another of the

two wake functions (46) can give a dominant influence on
the antiproton beam stability. The direct wake effects are
suppressed if there are many Larmor oscillations periods
over the antiproton bunch length σs, while the skew force
impact decreases with increasing x− y detuning.

In the case of the Tevatron operating near the coupling
resonance ∆ν = |νx − νy| ≈ 0.01, consideration of the
coupling of only the two closest modes νx + mνs and
νy+nνs (m, n are integer), gives the following expression
for the threshold magnetic field [20]:

Bthr ≈ 1.3
eNp̄

√
ξexξ

e
y

a2
√

∆ννs
. (48)

For ξex = ξey = −0.01, Np̄ = 6 · 1010, νs = 0.001,∆ν =
0.01, a = 1 mm, the solenoid magnetic field has to be
more than Bth = 12 kG.

b. Multi-Mode Analysis The two mode coupling
model allows us to derive analytical formulae for the
TMCI threshold by taking into account only a constant
skew component of the wake force due to the electron
beam and just two coupling modes. A more general nu-
merical algorithm for calculating the mode coupling is
developed in Ref. [22] and it avoids such simplifications
and considers many modes and a general wake form, and,
most importantly, it deals with non-averaged motion. In
that analysis, the antiproton bunch is divided into several
radial and azimuthal parts in synchrotron phase space,
and consequently, a series of synchrobetatron modes can
be seen. The wake force kick changes the backward par-
ticles’ angles. The rest of the accelerator is presented by
a linear transformation matrix (rotation in phase space).
Eigenvalues (eigentunes) of the resulting transformation
matrix can be calculated numerically. The complexity
of the calculations is squared as the number of modes,
so, for calculations with MATHCAD software one has to
limit the number.

We divide the bunch into 1 radial (i.e. the same syn-
chrotron oscillations amplitude for all particles) and 7
azimuthal parts for both vertical and horizontal degrees
of freedom. Thus, it is possible to see the behavior of the
first 1 radial and 7 azimuthal synchrobetatron modes in
horizontal and vertical motion taking into account their
coupling. Complete expressions for the linearized direct
and skew transverse wake functions Eq.(46) are used.
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FIG. 13. Eigenfrequencies(tunes) of the antiproton bunch
oscillation modes versus the antiproton betatron tune shift
due to the electron beam ξe (horizontal axis). The vertical
scale on the left is for the fractional part of the tunes Reν (up-
per series of lines), and the right side scale is for the imaginary
part of the tunes Imν (lower series of lines).

Numerical parameters used in these calculations are
Np̄ = 6 ·1010, the rms size of the round Gaussian antipro-
ton beam is σp̄ = 1 mm, and the longitudinal magnetic
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field is equal to 10kG. Fig.13 shows the eigentunes ver-
sus the linear betatron tune shift ξe due to interaction
with electron beam. The fractional part of the beta-
tron tune for the horizontal motion is νx = 0.556 and
for the vertical νy = .555, and the synchrotron tune is
.001. Therefore, the betatron tune difference is exactly
the synchrotron tune. If ξe = 0, then the eigenfrequen-
cies of the azimuthal modes are equal to νx,y + k · νs,
where the integer k has 7 values in the range of −3, ...3
and represents the number of modulation periods in syn-
chrotron phase space. Some of the modes coalesce with
increasing ξe, and the real parts of their tunes Reν (see
upper series of curves in Fig.13) become equal, while the
imaginary parts Imν bifurcate into one negative and one
positive branch. The latter evidently means instability in
the motion. In our case, the first merging of modes takes
place at ξ ≈ .0017; the next merging of higher modes
occurs at ξ ≈ .0045, etc.
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FIG. 14. Threshold antiproton tune shift ξe (vertical axis)
due to the electron beam versus the difference of antiproton
horizontal and vertical tunes ∆ν = νx − νy. B = 10 kG,
νs = 0.001, Np̄ = 6 · 1010.

Fig.14 shows the tune shift threshold ξe for the first
coupling modes versus the tune split in units of the syn-
chrotron tune ∆ν = (νx−νy) for a vertical tune equal to
.555. The threshold grows linearly until ∆ν ≈ (2−2.5)νs
and then is approximately proportional to

√
∆ν - in

good agreement with the two mode model. Note, that
a completely adequate consideration of the fast oscillat-
ing parts of the wakes would require many more modes
∼ kσs ' 30− 100 to be taken into account.

c. TMCI simulations with electron beam Three di-
mensional simulations of the effects have been done with
a numerical code [20]. The round Gaussian antipro-
ton beam (σx = σy = σp̄) is presented as a number
of macroparticles (typically in the range from M=128
to maximum 2048). The particles have equal charges

e∆Np̄ = eNp̄/M . Both direct and skew wakes are taken
into account in this numerical simulation. The simula-
tion reveals, that although the antiproton bunch motion
is essentially two-dimensional (since the wake is 2D), the
instability starts in that plane where the original lattice
tune is closer to half integer ν = 1/2, e.g. in the horizon-
tal plane for the Tevatron ring.
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FIG. 15. Threshold solenoid field Bthr vs tune shift
due to electrons |ξe| at different bunch populations
Np̄ = 1, 6, 10 · 1010. Focusing lattice tunes νx = 0.585,
νy = 0.575, synchrotron tune νs = 0.0012, no betatron tune
spread in the beam, and the rms size of antiproton beam
σp̄ = 0.7 mm.

Fig.15 shows results of the numerical simulations giv-
ing the threshold strength of the solenoidal magnetic field
Bthr vs. the electron beam intensity parameter ξe for an-
tiproton bunch populations equal to Np̄ = (1, 6, 10) · 1010

- lower, middle and upper curves, respectively. We de-
fine the threshold as the value of B which results in
more than a 10-fold increase of the initial centroid be-
tatron amplitude over the first 10,000 turns. One can
see, that the field is approximately proportional to both
ξe and Np̄ in accordance with the theoretical prediction
Eq.(48). We found that the dependence of the threshold
on the synchrotron tune agrees well with theory, also, i.e.
Bthr ∝

√
νs.

In order to evaluate the importance of the oscillation
part of the wakes in Eq.(46), we performed similar sim-
ulations without the constant part of the skew wake, i.e.
with Wd(s) = W sin(ks) and Ws(s) = −W cos(ks). We
found that a solenoid field about 5 times smaller is re-
quired for stability. This confirms the decisive role of
the the constant part of the skew wake that is a basic
assumption of the two-mode coupling model.
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FIG. 16. Threshold magnetic field vs horizontal tune νx.
Dashed line corresponds to Bthr ∝ 1/

√
|νx − νy|; νy = 0.575,

νs = 0.001, ξe = −0.01, Np̄ = 6 · 1010, σp̄ = 0.7 mm.

The TMCI threshold sensitively depends on the oper-
ation point νx, νy. Fig.16 presents the results of scanning
the horizontal tune νx from 0.52 to 0.63 while the verti-
cal tune is held constant at νy = 0.575. In close vicinity
to the coupling resonance ∆ν = |νx − νy| ≤ 15νs, the
threshold magnetic field depends on νs approximately as
∝ 1/|∆ν|κ, where 2/5 < κ < 1/2. Away from the reso-
nance, the best fit power is κ ≈ 1/5. The tune depen-
dence on the tune split is different from Eq.(48) if |∆ν|
is more than 15νs ≈ 0.015. The threshold also goes up
near the half-integer resonance νx→ 0.5.

In order to compare simulations with the two mode
model, one can fit Bthr in a form similar to Eq.(48):

Bthr ≈
0.95eNp̄ξe

σ2
p̄

√
|νx − νy|νs

=
17.5[kG] Np̄

6·1010 | ξ
e

0.01 |

(σp̄[mm]
0.7 )2

√
νs

0.001
|∆ν|
0.01

, (49)

- see also the dashed line in Fig.16. There are differ-
ences in numerical factors between Eq.(49) and Eq.(48)
because of a) the kick due to a Gaussian beam differs
from a round beam kick Eq.(43) and σp̄ is used instead
of a; b) the oscillating parts of the wake forces are taken
into account in the simulations in contrast to the two
mode model; and c) more than two modes play a role
in the computer tracking because of the large number of
macroparticles. Nevertheless, there is excellent quantita-
tive agreement with the results of the multi-mode anal-
ysis presented in Fig.14.

Neither the two-mode theory nor the multi-mode anal-
ysis deal with the tune spread in the antiproton bunch,
which will tend to suppress the instability due to Landau
damping [23]. The TMCI can be additionally suppressed

if the electron beam has a radius larger than the an-
tiproton beam radius, a ≥ σp̄. It was found out in Ref.
[20] that the skew wake function scales with the electron
beam radius as Ws ∝ ne/a2, i.e., using a two times wider
electron beam will lead to 4 times smaller required mag-
netic field for the same ξe. The oscillating direct wake
function Wd(s) does not depend on the electron beam
radius when the electron density is fixed. Coupling of
higher than dipole single bunch modes is the subject for
further studies.

D. Effect on proton beam, long-term control

Since the Tevatron collider operates with many more
protons per bunch than antiprotons per bunch, the an-
tiproton beam-beam tune shift is larger than the proton
tune shift. Therefore, the compensation will be neces-
sary only for antiprotons. The direction of the electrons’
propagation is opposite to the antiprotons velocity (i.e.
they collide 3). The proton beam moves in the opposite
direction in the same vacuum chamber and also may ef-
fectively interact with the electron current. If the proton
and antiproton beam orbits are not separated, then an
additional positive tune shift for protons is

ξep ≈
Nerp(1 − βe)

4πεn
= ξe

1− βe
1 + βe

. (50)

If βe � 1, ξep does not differ too much from ξe ' 0.01
which is supposed to be too large to tolerate. One needs
to avoid this impact on the proton beam due to electron
charge. Separation of the proton and electron beams can
help a lot: e.g. a separation of d ≈ 10σp ' 7mm causes
quite a minor proton beam tune shift of about

ξep(d) ≈ 2ξe

(d/σp)2

1− βe
1 + βe

∼ 1.3 · 10−4, (51)

with vertical and horizontal having opposite signs.
A very important issue is longer term control of the

electron beam. The amount of required tune spread com-
pensation varies in time, e.g. at injection proton and an-
tiproton beams are everywhere separated and that yields
one pattern of the footprint; after acceleration beams
collide at two IPs, the separator strength goes down and
they provide different separations at parasitic crossings,
etc, and consequently, the tune footprint is changed; fi-
nally, after a few hours the intensity and emittances of
the beams are significantly different. The electron lens
has to be adjusted in order to compress the tune area
effectively. One way to reach the goal is to rely on

3Due to the very small inelastic e − p̄ cross section the an-
tiproton beam lifetime does not depend significantly on elec-
tron current.
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a beam-beam model which predicts the footprint from
measured data on bunch intensities, emittances and sep-
aration. Another choice is to continuously measure the
beams’ tune spectra and make necessary corrections in
electron beam current, size and distribution (i.e. imple-
ment a kind of long-term feedback). Reliability of the
set up during collider operation may probably require
multiple cathodes or guns.

E. Electron current fluctuations

Fluctuations of the electron current from turn to turn
cause time variable quadrupole kicks which lead to a
transverse emittance growth of the antiproton bunches.
The current in the electron lens set-up has to be mod-
ulated rather fast although periodically, and thus, the
issue of how stable the current is at a one-turn scale may
be of importance.

The emittance growth rate due to fluctuations of a
gradient δG of a lens with length L is given by [24]:

dεz
dt

= f2
0

εz
16

(
eLβz
Pc

)2
∞∑

n=−∞
SδG(f0|2νz − n|), (52)

where f0 is the revolution frequency, β0 is beta function
at the lens location, P is the antiproton momentum, νz
is the machine tune, and SδG(f) is the power spectral
density (PSD) of the gradient fluctuations. The PSD we
use is defined for positive frequencies f . One can see
that only some particular frequencies contribute to the
emittance growth, and the lowest of them (2∆νz − 1)f0

is about 7.2 kHz for the Tevatron. If one assumes that
the current ripple is “white noise” with a constant PSD
SδG, then, the rms value of the ripple δG relates to the
PSD as

δG2 = (1/2)f0SδG,

and therefore, taking into account that there are two elec-
tron beams (with presumably uncorrelated current fluc-
tuations) on the antiproton orbit, one gets:

dεz
dt

= 2π2f0εz((ξe1z)2 + (ξe2z)
2)(

δJ

J
)2, (53)

where F1,2 are focal lengths of the two electron beams,
δJ/J is the rms value of relative current fluctuation, ξ1,2,z
are the values of tune shift produced by electron lenses 1
and 2 respectively (proportional to the current) and we
used the relation ξe = (1/4π)βz/F .

From Eq.(53) one immediately gets the emittance evo-
lution equation:

εz(t) = ε0z exp (t/τ ez ), (54)

where the characteristic growth time is equal to

τ ez =
1

4π2f0((ξe1z)2 + (ξ2z)2)( δJJ )2
. (55)

The growth time is different for different bunches, e.g.
τ ez is smaller for the bunches which experience larger cur-
rents J and, therefore, tune shifts ξe. These bunches
(named PACMAN bunches) are usually located near the
gaps (see Fig.4). Let us take for example one of those
bunches with ξe1x = 0.01 and ξe2x = 0.002, then a require-
ment of τ ex > 10 hrs results in δJ

J < 0.53 · 10−3. If one
assumes a constant distribution function for the ripple 4,
then the value above corresponds to peak-to-peak current
fluctuations of

∆J
J
≈ 1.8 · 10−3. (56)

For non-PACMAN bunches (inside the batch, away
from the gaps) the requirement is somewhat less strin-
gent ∆J

J
< 3.2 · 10−3. This current stability will require a

stable voltage Ue of the (modulated) power supply which
controls the electron gun current5 of

(
δUe
Ue

)
= 2

3

(
δJ
J

)
<

10−3.

F. Transverse electron beam motion

Transverse motion of the electron beam may also cause
direct antiproton emittance growth. Indeed, if the elec-
tron beam displacement is equal to δX, then the dipole
kick experienced by antiprotons is δθ = δX/F , where F
is the focal length of the defocusing electron lens. Co-
herent antiproton betatron oscillations occur and after
some decoherence time they result in antiproton emit-
tance growth. The normalized emittance grows linearly
in time and its growth rate is equal to [25]:

dεx
dt

=
γp̄f

2
0

4

∑
sources

βx
F 2

∞∑
n=−∞

SδX(f0|νx − n|). (57)

Note, that the frequencies of interest f0|νx − n|
start from the betatron frequency of the Tevatron (1 −
∆νx)f0 ≈ 20 kHz.

Using the same transformations as above, one gets for
two electron lenses:

dεx
dt

= 8γp̄π2f0δX
2
( (ξe1x)2

β1x
+

(ξe2x)2

β2x

)
, (58)

where δX now stands for the rms electron beam vibra-
tion amplitude.

Let us constrain the emittance growth rate to be less
than εn/10 hours, εn = 2.5π mm·mrad. Then, for the
PACMAN bunches we get the following requirement on
the rms electron beam turn-to-turn position stability

4for such a distribution the rms value is 1/
√

12 of the peak-to
peak value

5taking into account Child’s law (10)
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δX ≤ 0.14µm. (59)

For the bunches in the middle of the bunch train, the
requirement is about 0.21 µm.

The tolerable amplitudes are several orders of magni-
tude larger than vibrations of the Tevatron quadrupoles
at high frequencies. Accordingly to [26], the rms ampli-
tude of the Tevatron quadrupole magnets at frequencies
above 100 Hz is about 2nm, and the amplitude rapidly
goes down with increase of frequency. However, other
sources of electron beam jitter have to be checked.

If the electron beam and the antiproton beam are not
properly aligned with respect to each other and they col-
lide off-center with displacement equal to ∆X, then elec-
tron current ripple at betatron frequencies causes dipole
kicks on antiprotons and can also lead to transverse emit-
tance growth. The tolerance can be easy estimated from
Eq.(59) as:

∆J
J

∆X ≈ δX. (60)

Note, that the tolerance depends on the straightness
of the electron beam in the interaction region, which is
determined by the solenoid field quality. Using ∆X =
0.25σp̄ = 0.15 mm, one calculates the rms current ripple
tolerance for the PACMAN bunches as ∆J

J < 1.1 · 10−3,
or about 0.37% peak-to-peak, and about 1.6 · 10−3 the
rms value and 0.52 % peak-to-peak for non-PACMAN
bunches. These requirements are somewhat loose in com-
parison with the quadrupole kick effect.

G. Solenoid Field Quality

A strong solenoid magnetic field B of the order of sev-
eral Tesla in the straight section of the electron lens as-
sures that the electrons perform very small but fast Lar-
mor oscillations around the magnetic field lines. There-
fore, deviations of ~B from a straight line will cause off-
center collisions of the antiproton and electron beams.
In the case of the non-linear electron lens this may cause
unwanted non-linear components of the forces. To avoid
the effect, one needs to have the field lines not deviate
from the straight antiproton orbit more than some part
of the transverse antiproton beam size σp̄ ≈ 0.8 mm. If
one requires a solenoid field straightness equivalent to
∆X = 0.2 mm, then a transverse field component has to
be less than

∆B⊥
B
∼ ∆X

L
∼ 0.2mm

2m
= 10−4.

This is comparable with the field quality in numerous
electron cooling devices.

V. DISCUSSION AND CONCLUSIONS

A. Historical overview

The idea of the compensation of the beam-beam in-
teraction has been discussed previously for other collider
facilities, mostly e+e− (one of the earliest publication is
Ref. [27]). The theory of compensated electron-positron
collisions in storage rings [28] predicts that collective in-
stabilities in the circulating beams limit the performance
and do not allow significant benefits with respect to the
usual uncompensated case. Experiments with compen-
sated e+e− beams were carried out at the DCI collider
at Orsay in the 1970s [29]. There were two intersect-
ing rings with four equally populated beams (positrons
and electrons in each ring) which collided at the same
point. This arrangement yielded a space charge and a
current compensation factor of about 5-10. It allowed
an increase of the maximum beam-beam parameter ξ
from 0.018 to 0.024. Nevertheless, there was no signifi-
cant increase in luminosity, and it was concluded that the
value of ξ rather than the residual compensated value of
ξr = ξ/(5− 10) sets the limit. Stability regions, smaller
in size than those observed in the two-beam configura-
tion, were found to decrease rapidly with current, prob-
ably because of collective modes. A decade later, experi-
mental studies at VEPP-4 e+−e− collider demonstrated
that partial compensation of the cubic nonlinearity in the
beam-beam interaction with use of octupole lenses may
result in a reduction of particle loss rate and a gain in
the machine efficiency [30]. Similar effects are predicted
in a recent theoretical analysis [31].

In linear e+e− colliders, the beams collide once, and
therefore, there is no long-term memory in an opposing
beam as in storage rings. Thus, collective phenomena are
weaker. Charge separation in neutralized beams occurs
only if the space charge parameter is very large ξ � 1
[32], [33].

It was pointed out in Ref. [34] that compensation of
beam-beam effects with an electron beam leads to elonga-
tion of the transverse decoherence time due to the smaller
tune spread. This also leads to less stringent require-
ments on the feedback system for emittance preservation
in large colliders like the LHC.

B. Conclusions

We have described a technique to compensate the
beam-beam induced tune shift and tune spread of an-
tiprotons in the proton-antiproton Tevatron collider with
the use of low-energy high current electron beam. Imple-
mentations of the technique can include 1) the “electron
lens” with modulated current which provides different
linear defocusing forces for different antiproton bunches
and, therefore, equalizes their betatron frequencies; 2)
the “electron compressor”, a nonlinear but DC electron
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lens to compensate (on average) the nonlinear focusing of
antiprotons due to the proton beam and, thus, to shrink
the beam-beam footprint; and 3) a several times more
powerful “electron compressor” to eliminate the crossing
angle, and, therefore, to double the luminosity, or to al-
low more proton-antiproton interaction points, or to get
the same luminosity with smaller beam intensities.

The electron beam setup looks much like an electron
cooler, except electrons collide with antiprotons. The
proton beam has to be separated from the other two. 2-
m long, 2-mm diameter, 10 kV electron beams with 1-2
Amperes of current are to be installed in places with large
beta-functions (∼100m), away from the main interaction
points (IPs - B0 and D0 at the Tevatron). A strong lon-
gitudinal magnetic field plays a significant role in main-
taining stability of both electron and antiproton beams
as well as in keeping the electron beam current distri-
bution distortions and, therefore, distortions of electron
space charge forces, within acceptable limits.

Reduction of the bunch-to-bunch tune variation can
be done with two round electron beams with specially
programmed time-variable electron currents. One of the
electron lens setups has to be installed at a location where
the vertical beta-function is larger than the horizontal
one βy > βx and, therefore, will affect mostly the ver-
tical antiproton tune; another requires the opposite re-
lation βy < βy for mostly horizontal tune changes. For
better linearity of the electron lens, the size of the elec-
tron beam should be two-three times the rms size of the
antiproton beam. The electron current needed is peri-
odic with the Tevatron revolution frequency. The cur-
rent waveform (amplitude and modulation) depends on
the particular colliding bunches pattern, bunch intensi-
ties, crossing angle and orbit separation. We considered
the time structure of the defocusing force due to electron
current and estimated, that the 132 ns bunch spacing in
TEV33 will require 100-120 ns current modulation time
in the 2 m long 10kV electron lenses.

Electron current fluctuations from turn to turn (more
precisely, at frequencies about double the betatron fre-
quency) should be less than ∆Je/Je < (2−3)×10−3 peak-
to-peak. Otherwise variable defocusing kicks may lead to
significant transverse antiproton emittance growth. The
transverse emittance growth caused by the dipole kick
due to a displaced electron beam is a less stringent re-
quirement on the current ripple, depending on how well
the electron and the antiproton beams are centered at the
interaction region. Direct emittance growth with ideally
centered beams due to electron beam vibrations is pre-
dicted to be negligible.

Non-linear beam-beam compensation and the footprint
compression require precise control of the electron beam
shape. In principle, that can be done with use of near
cathode electrodes in the diode electron gun.

We have considered distortions of the electron beam in
the beam-beam compensation set-up. It is found that a
rather low longitudinal field of about 1kG can avoid the
beam blow up due to defocusing electron and antipro-

ton space charge forces. A much higher solenoid field of
about 20-40 kG is necessary to have electron charge dis-
tribution distortions within a few percent with respect to
the original axisymmetric distribution. The need comes
from a requirement to contribute much less x−y coupling
than other sources in the Tevatron collider ring, and to
not introduce significant spread of the coupling in the
antiproton bunch. Analytical considerations have shown
that the distortion is smaller if the electron beam size is
several times the antiproton beam size.

We have considered “head-tail” coupling in the
Tevatron antiproton beam due to the electron beam
impedance. The coupling can cause a single antipro-
ton bunch instability if the magnetic field is less than
a threshold value of the order of 20 kG. Consequently, to
assure stability, a 40-60 kG longitudinal magnetic field
has to be in the interaction region of the electron lens.
A two-mode model agrees with multi-mode analysis and
numerical simulations results.

The general conclusion is that beam-beam compensa-
tion with an electron beam looks very promising and it
provides additional powerful “knobs” to control beam
dynamics in the Tevatron collider. We find no severe
requirements on the electron beam for the suggested de-
vice, and believe that realization of the idea will give
benefits for the Tevatron.

C. Experimental test

An experimental installation that should demonstrate
the feasibility of the electron lens is now under construc-
tion at Fermilab. This set-up will serve as a prototype
of the device that can later be inserted into the Tevatron
ring.

The goals of the set-up are to obtain 10 kV 2-meter
long electron beam with total current up to 2A propa-
gating in a precise solenoid magnet, to test the current
modulation in a few MHz bandwidth, and to study the
beam dynamics. The parameters of the experimental in-
stallation are about the same as for the full scale device,
except a somewhat lower magnetic field and current den-
sity. The set-up will allow study of the measures to sup-
press the two beam drift instability, and testing of all the
physical and technical solutions needed to build the elec-
tron lens for beam-beam compensation in the Tevatron.

The experimental installation consists of a diode elec-
tron gun and collector immersed in a magnetic field of
1-2.5 kG produced by 0.5 m long normal conducting
solenoids, and a 2 meter long beam transport section
inside a 4 kG solenoid magnet. The beam radius at
the cathode is 5mm and it can be compressed to about
2.5mm in the longer solenoid. The electron gun has spe-
cial control electrodes to change the beam profile. The
main solenoid of the installation is made precise enough
so that the achievable angular field homogeneity is bet-
ter than 5 · 10−5. The magnetic field straightness will
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be measured optically, using a mirror with an magnetic
arrow attached, and then improved if necessary by cor-
rector coils.
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